
J. Fluid Mech. (1993). 001. 251, pp. 203-218 
Copyright 0 1993 Cambridge University Press 

203 

A wake singularity potential flow model for airfoils 
experiencing trailing-edge stall 

By W. W. H. YEUNG' AND G. V. PARKINSON' 
Nanyang Technological University, Singapore 

Department of Mechanical Engineering, University of British Columbia, Vancouver, 
Canada V6T 124 

(Received 28 April 1992 and in revised form 1 December 1992) 

An incompressible inviscid flow theory for single and two-element airfoils experiencing 
trailing-edge stall is presented. For the single airfoil the model requires a simple 
sequence of conformal transformations to map a Joukowsky airfoil, partially truncated 
on the upper surface, onto a circle over which the flow problem is solved. Source and 
doublet singularities are used to create free streamlines simulating shear layers 
bounding the near wake. The model's simplicity permits extension of the method to 
airfoil-flap configurations in which trailing-edge stall is assumed on the flap. Williams' 
analytical method to calculate the potential flow about two lifting bodies is 
incorporated in the Joukowsky-arc wake-singularity model to allow for flow 
separation. The theoretical pressure distributions from these models show good 
agreement with wind-tunnel measurements. 

1. Introduction 
Although computational fluid dynamics (CFD) has become a standard tool for 

solving complex physical problems in theoretical aerodynamics, there are still 
important roles for classical analytical methods, for example in providing comparison 
models (Bearman, Graham & Kalkanis 1989) and exploring different boundary 
conditions (Parkinson & Yeung 1987, hereinafter referred to as P&Y). Two- 
dimensional incompressible potential flow continues to be a useful branch of fluid 
mechanics for the study of the aerodynamics of airfoils at low speed, even for problems 
of separated flow such as airfoils near stall. In such problems it is realistic to assume 
that the portion of the airfoil surface exposed to the separated wake is at the constant 
separation pressure, and the shear layers bounding the wake can be simulated by free 
streamlines. One can then solve for the airfoil pressure loading and the flow pattern 
outside the wake. In this process analytical methods can be very effective through the 
use of the powerful properties of singularities in creating flow models and conformal 
mapping in solving the resulting boundary value problems. 

The present paper deals with two new applications to airfoil aerodynamics of an 
analytical method of this type originally developed for symmetrical bluff-body flows 
proposed by Parkinson & Jandali (1970), and recently extended to flows past airfoils 
with spoilers or split flaps (P&Y). In the latter, the criterion of finite curvature (or 
pressure gradient) of the boundary streamline at separation is shown to be successful 
in eliminating the empirical specification of the separation point and provides a 
reasonable pressure distribution for the case of turbulent separation on a circular 
cylinder, compared with experimental data from Nakamura & Tomonari (1 982). 
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Although less satisfactory results are obtained when the criterion is applied to airfoils 
with lower-surface split flaps, more encouraging findings are obtained by incorporating 
a similar idea into the design of low-speed airfoils, as reported by Ormsbee & 
Maughmer (1986). As a result, this criterion is further tested in these two new 
applications. Both applications of the method are to the problem of airfoil trailing- 
edge stall. 

Trailing-edge stall, studied by McCullough & Gault (1951), occurs for some airfoil 
profiles and is associated with turbulent separation moving progressively forward from 
the trailing edge with increasing angle of attack. The chordwise pressure distribution 
is characterized by a high suction peak near the leading edge of the airfoil followed by 
a region of nearly constant pressure, indicative of flow separation, in the portion near 
the trailing edge. Previously, Schmieden (1940) proposed a hodograph method to 
model flow past a flat-plate airfoil exhibiting this type of stall, requiring tangential 
separation from the suction side as well as from the trailing edge to form an infinite 
wake. Subsequently, numerical methods for airfoil stall utilizing surface singularities 
were pioneered by Jacob (1969, 1987). This paper describes an analytical model of a 
different kind. The ultimate use of the model would be in an iterative calculation with 
a boundary-layer method to produce a prediction of the airfoil loading without 
empiricism. 

2. Two models for trailing-edge stall 
The Joukowsky airfoil profile used in P & Y (camber = 2.4 YO ; thickness = 11 % of 

chord) experiences trailing-edge stall and is used here as the prototype airfoil for a 
wake singularity model of the partially developed stall. The objective, given the 
separation point and the surface wake pressure coefficient Cpb assumed constant, is to 
predict the resulting airfoil pressure distribution and the shape of the separating 
streamlines. In fact, two wake-singularity models have been developed to simulate the 
partially stalled flow, using two different mapping sequences and two flow models. The 
first, or vanishing spoiler, model is essentially a modification of the spoiler model in 
P & Y. Here the spoiler length is made very small and its angle S is set at zero so that the 
spoiler tip represents the point of tangential separation of the partially stalled flow. 
This requires a modified sequence of conformal transformations from that in P&Y, 
but uses the same flow model in the final circle plane. It leads to a good prediction of 
airfoil pressure distribution, but an unsatisfactory prediction of separation streamline 
shape, so the model is not presented in detail here (see Yeung 1990). 

The second, or Joukowsky arc, model was devised to exploit a simpler mapping 
sequence. It avoids the artificiality of a small zero-inclination spoiler simulating the 
separation region, and gives a better initial shape to the separating streamline. 

2.1. Joukowsky arc 
The mapping sequence is shown in figure 1. Using the fact that the portion of the body 
exposed to the wake is ignored in the flow model, part of it is truncated to create 
tangential separation at point A. The contour in the 2,-plane is a circular-arc slit, 
centred in the second quadrant. A standard Joukowsky transformation maps it into a 
Joukowsky airfoil profile slit omitting the upper surface between points A and B. A is 
the upper-surface separation point in the stall problem and B is the upstream end of 
a trailing-edge portion of the upper surface lying in the wake region of the flow, and 
required by the mapping method as explained below. A translation and rotation to the 
&-plane then recreates the circular-arc slit of the original wake source model for the 
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=3 

FIGURE 1 .  Mapping sequence for Joukowsky-arc model of airfoil experiencing trailing-edge stall. 

circular cylinder flow in Parkinson & Jandali, and a second Joukowsky transformation 
maps the slit into a circle. Finally, this is rotated to the [-plane (so that the approach 
velocity is in the direction of the real axis), where the flow problem is solved. The 
transformation equations are 

z = A,(Z,+ l / Z , ) + B , ,  (2.1) 

2, = c, Z,+D, ,  (2.2) 
(2.3) 

= i?eiao 5, (2.4) 

2, = 2, -cot di - 1/(Z3 -cot d i ) ,  
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1 z I 1 
2+L,’ 2+L,’ 1 +2€’ 

A ,  = - B, = 1 Ll = 2e+- 

C ,  = T e x p [ i ( ~ ) ] s i n ( ~ ) ,  R # + # B  #A - # B  D, = Rexp[i(+)cos(T)+210, # +A3 # A - # B  

R = 11 -Zl01, Zl0 = ( -c,p).  

Although the flow near and the pressure distribution along the arc BC predicted by 
the model are not of interest since the arc lies in the wake region, it was necessary to 
create the arc in the mapping to separate points B and C, which are critical points of 
different mappings in the sequence. The length X, in figure 1 is an adjustable 
parameter. 

Two additional mappings are required for an arbitrary airfoil profile. A Joukowsky 
transformation would map the wetted surface of the profile and the trailing-edge 
portion of the upper surface into a near circular arc. Then a true circular arc like that 
in the 2,-plane can be generated by the series transformations of Theodorsen (1931) 
or James (see Halsey 1982). A finite trailing-edge angle of the profile can be made a 
cusp by modifying the portion on the upper surface, which is exposed to the wake and 
does not affect the present model. 

2.2. Flow model and results 
The flow model in the 5-plane is similar to the 2-source model in P & Y, but one of the 
sources is replaced by a doublet tangent to the circle, which was found to be more 
effective. The complex velocity in the 5-plane is 

where qD and 8, are respectively the strength and angular location (on 151 = 1) of the 
doublet, 8, is the location of the remaining double source on the circle, qs is the strength 
of the double source and its image sink, and y is the strength of the vortex (for 
circulation). The pressure coefficient C, in the 2-plane is defined as 

P - P ,  c, = - &Vz ’ 

where p and p ,  are the local and upstream undisturbed pressures and $Sv‘ is the 
dynamic pressure. Through Bernoulli’s equation, C, can then be written as 

The boundary conditions used to solve for qD, qs, y ,  a,, 8, me: (i) W(0 = 0 at 5 = eiHc 
and 6 = eieA, where 8, and 8, are angular locations of C and A defined in figure 1 ; (ii) 
C,  = Cpb at these two locations in the Z-plane, where Cpb is the pressure in the wake, 
given empirically, and (iii) finite C, gradient at separation; that is, from P&Y, 

f f ’ - f f ’  1 2  2 1  = 0 (2.8) 
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FIGURE 2. Pressure distribution for Joukowsky airfoil with trailing-edge stall, a = 14’. 
theory, X, = 0.40, C, (wake) = -0.50, X, = 0.95; 0, experiment. 
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FIGURE 2. Pressure distribution for Joukowsky airfoil with trailing-edge stall, a = 14’. 
theory, X, = 0.40, C, (wake) = -0.50, X, = 0.95; 0, experiment. 
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FIGURE 3. Separation streamlines in Joukowsky-arc model, a = 14’, for the example of figure 2. 

at 5 = eieA where f, = I W(y)l and f, = IdZ/d51, and the derivative is taken with respect 

Because both W(y) and dZ/d[ vanish at the critical points, their pressure coefficients 
to e. 

have to be evaluated by using l’H6pital’s rule, 

Figure 2 compares the calculated C, distribution, using X, = 0.95, with ex- 
perimental data. The experiments were conducted using the same Joukowsky airfoil 
model, wind tunnel, and test conditions as described in P&Y. The Reynolds number 
was 5 x lo5. The agreement is good. The separation streamline is shown in figure 3. The 
two symbols in the diagram represent the locations of the doublet and the source on 
the slit. Varying the value of X, has the effect of changing the overall lift and the shape 
of the streamlines. For X, = 0.99, the corresponding C, distribution and the 
streamlines are still acceptable, as shown in figures 4 and 5. However, X, = 1 (segment 
BC eliminated) must be avoided, and too low a value of X, produces a separation 
streamline shape unlike that of the actual separating shear layer, so it is recommended 
to choose 0.85 < X, < 1. 
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FIGURE 4. Pressure distribution for Joukowsky airfoil with trailing-edge stall, a = 14’. - 
theory, X, = 0.40, C,  (wake) = -0.50. X, = 0.99; 0, experiment. 

FIGURE 5. Separation streamlines in Joukowsky-arc model, a = 1 4 O ,  for the example of figure 4. 

3. Two-element airfoils near stall 
3.1. Calculations for two lifting circles by Williams’ exact method 

As pointed out by Williams (1971), the method of calculating the potential flow about 
multiply-connected regions can be very complex, involving the use of elliptic functions. 
Hence, he has devised a method to systematically establish the potential flow about two 
lifting circles by the method of images based on Milne-Thomson’s circle theorem. The 
overall flow is then represented simply by a sequence of three components : a streaming 
flow past both circles, a flow with unit circulation around the first circle, and one 
around the second circle. Each component is represented by an infinite series which 
converges absolutely. Then, the two circles are mapped conformally into two airfoils 
by Karman-Trefftz transformations with the circulation on each element determined 
by the Kutta condition at the trailing edge. 

The complex potential for the streaming flow of velocity V approaching two circles 
at an angle of attack So can be written as 
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where 

In general, 

V 
FIGURE 6. Geometry of two circles in streaming flow with doublet images. 

h ( 0  = 6e-ido, 

f o ( 0  = g-0,’ K~ K,  = a2ei80, D, = 0, 

go(0 = - Jo , J,  = b2eibo, Lo = c. 
6- LO 

where forJ= 1,3,5, ... 

and for J = 2,4,6, . . . 

and the overbar denotes the complex conjugate. 
Figure 6 depicts the sequence of image doublets for the two circles. 
If p,((n and q,(O respectively denote the image systems of a vortex flow of unit 

strength around circles I and I1 in figure 7, then the complex potentials for the flow 
around individual circles are 

L, = C, L2 = c-b2/C, 
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+ c  + 
FIGURE 7. Geometry of two circles with vortex images. 

and f o r j  = 3,7,11, ... , 

a2 a' 
L -- 9 4 + 1 =  - 9  

- L5+ '5-1 

while for j = 5,9,13, ... , 

where do = c, d, = 0, d2 = a2/c ,  
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andforj=3,7,11,  ..., 

where 

f o r j =  5,9,13 ,..., 

where 

The total complex potential is obtained by superposition, 

where y lV  and y2V are the vortex strengths around the first and second circles 
respectively. The horizontal (u) and vertical (u) velocity components in the [-plane 
containing the circles are given by 

from which the normal velocity (U,) and tangential velocity (U,) components at a point 
on the surface of a circle are 

U, = ucos@+usin@, (3.5) 

Ue = ucosd-usin@, (3.6) 

where 0 denotes the angular coordinate of this particular circle with respect to its own 
centre. 

If sufficient terms are included in the series of F ( 0 ,  then the normal velocity on the 
surface of each circle should be close to zero. In the present work, the series is truncated 
once the accuracy set for the normal velocity components has reached lo-'. 

The tangential velocity of the complete flow at point P on the surface of a circle can 
then be expressed as 

(3.7) 

where Uz is the component from the streaming, U:l is the component due to unit 
circulation around the first circle, and W i t  is the component due to unit circulation 
around the second circle. 

ue(p) = yIuf(p) + 71. uil(p) + yz * Ui*(p)I, 

3.2. Multi-element airfoils near stall 
Instead of using the Karman-Trefftz transformations to map the two circles 
conformally into two airfoils as in Williams (1971), the sequence of the Joukowsky-arc 
model is used to create a stalled flap staggered behind the main airfoil. In fact, this 
model can be used for stalled flow on either element. However, the strong adverse 
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z 

FIGURE 8. Mapping sequence for airfoil with slotted flap experiencing trailing-edge stall. 

pressure gradient caused by the relatively large deflection of the flap would usually 
induce it to stall earlier. The following section is devoted to this situation. 

As in the Joukowsky-arc model, a stalled airfoil is created in the &-plane from a 
circle I1 in the [-plane, figure 8. Another circle I upstream of 11, which would be a near- 
circle in the &-plane, undergoes a Joukowsky transformation to become a near- 



A model for airfoils experiencing trailing-edge stall 213 

+ c +  

FIGURE 9. Geometry of two circles with images of a surface doublet. 

Joukowsky airfoil. In the 2-plane, the two profiles, one complete and the other trailing 
behind with its upper surface partly omitted are both near-Joukowsky. The details of 
the mapping equations are 

5 = z, eiC, (3.8) 
Z ,  = C,Z ,+D, ,  (3.9) 

z5 = Z,-cotd- l/(Z,-cotd), (3.10) 

2 4  = A,Z5+B2, 
2, = z*+ 1/Z4, 

z, = z,+ l/Z,, 
2, = C,Z ,+D, ,  

Z =  A ,Z ,+B, .  

(3.11) 
(3.12) 
(3.13) 
(3.14) 

(3.15) 

Complex constants A,, B,, C,, D,, A,, B,, C,, D ,  and angle go are for the purpose of 
orientation and scaling, and angle d is defined as in figure 1. 

The flow model in the [-plane consists of the streaming and circulating components 
around the two circles, as discussed in g3.1. A surface source and a doublet tangent to 
circle I1 with their appropriate image systems for both circles are adopted to simulate 
the separated flow on the flap. The general procedure to generate the complex potentials 
of the doublet and its images is similar to that for the streaming flow. For a doublet 
of unit strength tangent to a circle at [ = CD, the complex potential is 

i eibD 
ho(Y) = -- , where [,, = c + b eiJD. (3.16) 

5-5D 
Its images and their corresponding reflections are given by (as shown in figure 9) 

where f o r j  = 1,3,5, ..., 

and for j = 2,4,6, ..., 
J j  = 

with Jo = -ieibD, Lo = gD. 
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Therefore, the total complex potential created by the doublet and its images is 

(3. 

In a similar manner the complex potential of a unit source located on a circle at 5 , i  

its images in two circles can be written as 

m 

FD(O = ho(Y)+ c g,(O. 
I-1 

1 m 

7) 

id 

(3.18) 

where f o r j =  3,7,11, ..., 

a2 a2 
3 D , = r ,  D*+, =q b2 , L,,, = c-- Lj = c-- - 

b2 

C - Lj-, c - Lj-, j - 2  

and f o r j  = 5,9,13, ..., 

Therefore, the total complex potential is 

f l y )  = F"(9 + 71 VFcl(y) + 7 2  VFc'(s) + 4s vFso(o + q D  VFD(Y). (3.19) 

Again the series can be shown to converge absolutely. The tolerance set for truncating 
the series for the normal velocity components is lo-' as before. The total tangential 
velocity at a point P on the surface of either circle is 

u@(P) = V [ u : ( P ) + y ,  G 1 ( p ) + y 2  uip(p)+qs u&(p)+qD uF(p)], (3.20) 

where the first three terms within the bracket on the right-hand side are the same as 
those in (3.7). The fourth term is the component due to a source of strength qs located 
at 6, = c + b eibs. Finally, the last term is the contribution of the doublet of strength qD 
at cD = c + b eUD. 

The boundary conditions used to determine the strengths and locations of these 
added singularities q,, S,, qD, S, and yl ,  y2, the circulation in each circle, are the same 
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FIGURE 10. Pressure distribution for airfoil with slotted flap experiencing trailing-edge stall; 20 YO 
chord flap deflected 40'. (a) a = -6.9'. -, theory, X, = 0.90, X, = 0.25; C, (wake) = -0.545; 0, 
0, experiment (Wenzinger 1938). (b) a = 3.16'. - , theory X, = 0.90, X, = 0.05; C, (wake) = 
-0.571 ; 0, 0, experiment (Wenzinger. 1938). 
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FIGURE 1 I .  Comparison of airfoil profiles: * * * ., NACA23012; --, near-Joukowsky. 

(4 

FIGURE 12. Theoretical separation streamlines; (a) for example of figure IO(a); 
(b) for example of figure lO(b). 

as those for the Joukowsky-arc airfoil but on the flap here. In addition, tangential 
separation from the trailing edge of the main airfoil is enforced. 

No experiments were performed on the nearJoukowsky profiles, but two 
representative cases using NACA 23012 profiles for main airfoil and flap were tested 
by Wenzinger (1938). His measured C, distributions and the present theoretical 
predictions are compared with the Joukowsky profiles chosen to match the NACA 
profiles closely. 

The two cases are for a = -6.9" (figure lOa), in which X ,  = 25 % chord (of the 
flap), C, (wake) = -0.545; and a = 3.16" (figure lob), in which X ,  = 5 %  chord, 
C, (wake) = -0.571. X, = 0.90 was chosen for both cases. Surprisingly good 
agreement between theory and experiments is obtained on both elements. The 
discrepancy near the leading edge of the main airfoil is probably due to the inevitable 
differences in the airfoil shapes as shown in figure 11. Relatively high suction peaks 
predicted by the theory at the leading edge of the flap, C, = - 1 1  for a = - 6.9", and 
C, = -8.6 for a = 3.16", are probably caused by the 'narrow channel' bounded by the 
streamline from the trailing edge of the main foil and the leading edge of the flap, as 
shown in streamline plots, figures 12(a) and 12(b). 

Recently, Williams' method has been extended to calculate flow around multi- 
element airfoils by Suddhoo & Hall (1985). The present model could be applied to this 
type of configuration, although limited to one element experiencing trailing-edge stall. 

4. Discussion 
The Joukowsky-arc model for single-element airfoil stall has been shown to give 

good agreement with experimental pressure distributions. Although the measurements 
have not been corrected for wind-tunnel boundary constraints, the corrections should 
have a negligible effect on the agreement between theory and experiment because the 
input pressure at separation would also be corrected. The model also gives a good 
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prediction of the separation streamlines. As a result, the model has been extended to 
two-element airfoils by adapting Williams’ method. Comparisons with published data 
are also presented and seen to give reasonable pressure distributions. 

Because the process of flow separation is boundary-layer controlled, the location and 
pressure at separation are required in these models, which could serve as a useful 
partner with a boundary-layer method in an iterative solution of the problem. 

The Joukowsky-arc flow model to simulate the boundary of the wake has been 
altered from two sources (as in Parkinson & Jandali and P&Y) to one source plus a 
doublet. The doublet is preferred because it produces a separation streamline shape 
from the upper surface more like that of the actual shear layer. 

In the flow models of this paper, the curvature or pressure gradient of the streamline 
is assumed finite at separation. Once again, results thus obtained show that it can be 
a suitable condition for flow separation taking place on bluff sections with a 
continuously curved contour. 

The mapping sequence of the Joukowsky arc may allow models to be constructed for 
flow around airfoils over which separation followed by reattachment both occur 
tangentially. It avoids having the unrealistic stagnation points that usually occur in the 
above situations when modelled using potential flow. In addition, extra flow elements 
can be added onto the inner surface of the airfoil to give the option of specifying the 
required pressure along the bounding streamline, as in problems involving mixed 
boundary conditions. Another interesting issue that may deserve attention and further 
investigation is whether the criterion of finite streamline curvature or pressure gradient 
is applicable to flow at reattachment. 

Financial support for this study was provided through a grant from the Natural 
Sciences and Engineering Research Council of Canada. 

R E F E R E N C E S  

BEARMAN, P. W., GRAHAM, J .  M.  R. & KALKANIS, P. 1989 Numerical simulation of separated flow 
due to spoiler deployment. In Con$ Proc., Prediction and Exploitation of Separated Flow, pp. 
2.1-2.15. The Royal Aeronautical Society. 

HALSEY, N. D. 1982 Comparison of the convergence characteristics of two conformal mapping 
methods. AIAA J.  20, 724726. 

JACOB, K. 1969 Berechnung der abgelosten inkompressiblen Stromung um TragRiigelprofile und 
Bestimmung des maximalen Auftriebs. Z .  Flugwiss. 17, 221-230. 

JACOB, K. 1987 Advanced method for computing flow around wings with rear separation and 
ground effect. J .  Aircraft, 24, 126127. 

MCCULLOUGH, G. B. & GAULT, D. E. 195 1 Examples of three representative types of airfoil-section 
stall at low speed. NACA Tech. Note 2502. 

NAKAMURA, Y. & TOMONARI, Y. 1982 The effects of surface roughness on the flow past circular 
cylinders at high Reynolds numbers. J .  Fluid Mech. 123, 363-378. 

ORMSBEE, A. I. & MAUGHMER, M. D. 1986 A class of airfoils having finite trailing-edge pressure 
gradients. J .  Aircraft 23, 97-103. 

PARKINSON, G. V. & JANDALI, T. 1970 A wake source model for bluff body potential flow. J. Fluid 
Mech. 40, 577-594. 

PARKINSON, G. V. & YEUNG, W. 1987 A wake source model for airfoils with separated flow. J .  Fluid 
Mech. 179, 41-57 (referred to herein as P&Y). 

SCHMIEDEN, C. 1940 Flow around wings accompanied by separation of vortices. NACA Tech. Mern. 
961. 

SUDDHOO, A. & HALL, I. M. 1985 Test cases for the plane potential flow past multi-element 
aerofoils. Aeronaut. J .  89, 403414. 

M F L Y  251 



218 W. W.  H .  Yeung and G.  V.  Parkinson 

THEODORSEN, T. 1931 Theory of wing sections of arbitrary shape. NACA Rep. 41 1. 
WENZINGER, C. J. 1938 Pressure distribution over an NACA 23012 airfoil with an NACA 23012 

WILLIAMS, B. R. 1971 An exact test case for the plane potential flow about two adjacent lifting 

YEUNG, W. W. H. 1990 Modelling stalled airfoils. PhD thesis, University of British Columbia. 

external-airfoil flap. NACA Tech. Rep. 614. 

aerofoils. R. Aeronaut. Est., Tech. Rep. 71197. 


